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Abstract. We present Monte Carlo simulations of the spreading of bond percolation on 
three- and four-dimensional simple (hyper-)cubic lattices. The algorithm is the same as 
that applied previously in two dimensions, with th,e spreading proceeding from a hyper- 
,lane. We find the spreading dimension to be d = 1.82i0.02 (three-dimensional) and 
d = 1.88+0.03 (four-dimensional). Also, we obtain values of the percolation probability 
and of the static exponents with errors at least comparable to the best values from the 
literature. 

Recently, much interest has been devoted to one particular way of growing large 
percolation clusters. The method starts from some seed, incorporates in a first step 
all sites connected to it by unbroken bonds, and then proceeds to the next step. The 
sites connected to the seed by t unbroken bonds are called ‘growth sites’ at the tth 
step, since it is through them that the cluster grows in this step (Middlemiss er a1 1980, 
Alexandrowicz 1980, Pike and Stanley 1981, Grassberger 1983, 1985, Hong and Stanley 
1983a, b, Rammal et a1 1984, Havlin and Nossal 1984, Herrmann et a1 1984, Vannimenus 
et al 1984). Actually, this description applies to bond percolation. Bond percolation 
is considered throughout this paper; the formulation for site percolation is analogous. 

Physical realisations of this type of growth are the spreading of forest fires or 
epidemics (Grassberger 1983). In the latter context it is called the ‘general epidemic 
process’ (Bailey 1975). 

While the main interest in this process is its time behaviour, it appears that it is 
also one of the most convenient methods to study ordiqary percolation by Monte Carlo 
techniques. The latter is obtained at the limit t + 00. 

In all papers except those by Grassberger, the seed was taken to be a single site. 
In contrast, in Grassberger (1983,1985) two-dimensional percolation was studied by 
taking an infinitely long line as the seed. The main advantage is that one has large 
‘clusters’ from the very beginning, so that the fluctuations are small. When starting 
from a single site, one has very large fluctuations provided the clusters are still small. 
Also, small lattices can be used more efficiently, and distances from the seed are 
computed more easily. 

In the present paper, we shall present results from Monte Carlo simulations in 
three and four dimensions. We closely follow Grassberger (1985), to which we refer 
for details of the algorithm. We take as seeds the hyperplanes x = 0. Spreading then 
proceeds perpendicular to them into the positive x direction. In three dimensions, we 
used lattices of size 120 x 128 x 128, with periodic boundary conditions at the sides. 
Spreading always stopped before the far boundary (x = 120) was reached. This modest 
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size was dictated by the small core memory available (60000 words of 60 bits). In  
four dimensions, we used a bigger computer, allowing us to run lattices of size 
60 x 48 x 48 x 48. To obtain the correct critical value of p ,  we made runs at nine different 
values of p for d = 3. For every value of p ,  we made 500-1600 independent runs with 
about 320 time steps each, corresponding to a total number of about lo9 wetted sites. 
For d = 4, we made about 500-800 runs with up to 200 time steps at eleven different 
values of p ,  leading to - 1 . 2 ~  lo9 wetted sites. 

The measured quantities were the average number N, of the growth sites in the tth 
step and their average x, (i.e. their average distance from the seed). Results for d = 3 
are shown in figures 1 and 2. 

At the critical point we expect that 

(x,)- t*L (1) 

N, - t C Z 2 .  (2) 

and 

Notice that z, is called l / z  in Janssen (1989 ,  v' in Havlin and Nossal (1984), dmin in 
Stanley (1984), Y, in Alexandrowicz (1980) and i,b23 in Pike and Stanley (1981). 

Equations (1) and (2) should of course only hold for infinite lattices. Due to the 
finite width of the lattice, we have corrections whose signs can fortunately be estimated; 
since the number of growth sites ultimately has to decay exponentially on a finite 
lattice, the finite-size corrections tend to enhance the effective exponent z2. Similarly, 
since the distance (x,) has to grow linearly (once it is much larger than the transverse 
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Figure 1. Average distance xr of growth sites from 
the starting surface for bond percolation in three 
dimensions plotted against time r on a doubly 
logarithmic scale for different values of p (these 
values are the same as in figure 2 ) .  

Figure 2. Density of growth sites (absolute number 
N ,  divided by starting surface) for bond percolation 
in three dimensions, plotted against time I on a 
doubly logarithmic scale for different values of p .  
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width), the effective exponent z, is also overestimated. An error in pc has, in contrast, 
opposite effects on estimates of z ,  and z2. Thus finite-size corrections cannot be 
confused with errors in pr Another test for finite-size corrections consists of performing 
runs on much smaller lattices. We have done this, and conclude that these corrections 
are completely negligible. 

Values of pc and of the exponents zi could be read directly from figures 1 and 2. 
Due to possible corrections to scaling, we considered this to be unsatisfactory. Instead, 
we show in figures 3 and 4 effective exponents obtained by fitting equations (1) and 
(2) to intervals [ t /4 ,  t ]  for all t. The correct exponents are equal to the limits for 
I /  t + 0. We see in figure 3 that straight extrapolations in 1/ t are not possible for any 
value of p ,  showing that there are indeed non-negligible corrections to scaling. On the 
other hand, such an extrapolation is possible in figure 4, yielding 

( d = 3 ) .  
pc = 0.248 65 * 0.000 13 

ZZ = 0.63 * 0.02 
( 3 )  

(4) 
Using this value of pc  then gave 

Z, = 0.725 * 0.006 ( d = 3 )  ( 5 )  

(x,) = t ' l (  1 + a /  t + bt-*) (6) 

and gave the correction-to-scaling exponent A, defined by 

as A=0.65+0.1. 
The data for (x,) and N, in four dimensions are shown in figures 5 ( a )  and 6(a) .  

When effective slopes are fitted to them in the same way they give the results shown 
in figures 5 ( b )  and 6 ( b ) .  Again we see that no linear fit is possible to the slopes of 
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Figure 3. Average slopes of figure 1, averaged over 
the last $ of the time steps, and plotted against l / t .  
At the critical point, this slope should depend linearly 
on l / t  if there are no corrections to scaling with 
exponent < 1. The extrapolation to I /  t + 0 gives z,, 
for p = pc 

Figure 4. Same as figure 3, but for the data of figure 
2. The extrapolation to I / t + O  gives - z 2 .  
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( x f ) ,  suggesting a correction-to-scaling exponent A = 0.65 * 0.2. Proceeding further, as 
in the three-dimensional case, we are led to 

(7) 

(d =4) .  (8) I (9) 

p,=0.160 13*0.000 12 

z1 = 0.615 *0.010 

22 = 0.97 f 0.03 

Away from the critical point, we have the scaling ansatz for the density p ( x ,  t )  of 
growth sites (Grassberger 1983) 

p ( x ,  t )  t - [ ( B / % f + l l F ( E X l / v ,  & t l k )  e=p-pc  (10) 

from which we obtain z1 and z2 in terms of the static exponents P and U, and of a 
kinetic exponent U, (which was called 7 in Alexandrowicz (1981) and Grassberger 
(1983), V I I  in Grassberger (1985) and tmin in Hong and Stanley (1983a, b)): 

z, = U/ U, (11) 

z2= 1 - [ ( v - P ) l v f l *  (12) 

This ansatz implies the usual (hyper-)scaling relations. From the above we can already 
obtain the ratio P l  v, or equivalently the exponent 

-0.02 f 0.04 ( d = 3 )  
-0.10*0.09 (d = 4 ) .  

v = - - d + 2 =  2P 
V 

Further exponents can be derived by standard scaling relations. They include the 
fractal dimension dF of the infinite cluster at po and the spreading dimension 2 (defined 
via the number MT of growth sites with t < T in the infinite cluster, when grown from 
a single-site seed, as MT - T ; it is called the ‘chemical distance dimension’ d, in d 
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Figure 6. (a )  Same as figure 2, but for four dimensions. ( b )  Same as figure 4, but for four 
dimensions. 

Havlin and Nossal ( 1 9 8 4 ) ) .  We find 

( d = 3 )  
( d  = 4 )  

1.82 f 0.02 ( d  = 3 )  
1.88*0.03 ( d = 4 ) .  

d* = Z , d F =  { 
(Notice that equations ( 3 )  and ( 4 )  of Grassberger (1985)  only hold for d = 2 . )  

scaling ansatz 
In order to obtain the exponents /3, U and v, individually, we have fitted (x,) to the 

(x,)= t Z 1 r $ ( & t l ' ' f )  ( 1 6 )  
following from equation ( 1 0 )  (these fits also helped in estimating the errors in equations 
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(3)-(9)). We obtained 

( d = 3 )  

(d  =4) .  

I 
I 

U, = 1.22 * 0.06 

v =0.88*0.05 

p = 0.43 f 0.04 

v, = 1.10*0.04 

v = 0.68 k0.03 

0 = 0.65 f 0.04 

When comparing the above values with previous results, we have the general 
problem that results of different papers are sometimes mutually exclusive. 

Let us first discuss the case d = 3. The best agreement is for the exponent I )  whose 
world average is (Heermann and Stauffer 1981, Gaunt and Sykes 1983, Saleur and 
Derrida 1985) v =0.89*0.01. (Here, our error bar is bigger mainly because we made 
runs only very close to p c )  Accepting this value, some of our other error bars would 
become considerably smaller: v, = 1.23 * 0.02, /3 = 0.44 * 0.03. 

Agreement for the exponents p and 17 (for d =3)  is much worse. This seems to 
be related to the uncertainty of pn together with the strong dependence of estimates 
of p on pr  The best previous estimate of p c  is pc = 0.2492 *0.0002 (Wilke 1983) which 
is about 3 SD higher than our value, but values lower than ours can also be found in 
the literature (Heermann and Stauffer 1981). Our value of 17 is between those of 
Margolina et a1 (1982) and Gaunt and Sykes (1983) which both quote errors comparable 
to ours. A re-analysis of these papers (Adler 1984) claims that the errors in both were 
underestimated, so that our result would be the most precise one (provided our errors 
are not equally underestimated). Indeed, our results agree with those of Adler (1984). 
They also agree with the very recent value p / v  =0.48f0.01 of Sahimi (1985). 

1.4 +‘7 
0 

1.2 

0.41 I I I I I 1 

0 2 4 6 
d 

Figure 7. E expansion for the exponent v, compared to Monte Carlo results. Broken curve: 
second-order expansion (equation (19) truncated after third term); dotted curve: equation 
(19) truncated after fourth term; full curve: resummation of third-order expansion (de 
Alcantara Bonfim er a1 1981); full circles: Monte Carlo results of present work ( d  = 3,4)  
and exact values ( d  = 2 , 6 ) .  
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We should add that we found a very strong dependence of z2 on the chosen value 
of po much stronger than the dependence of z , .  From figure 4 we find z 2 =  
0.63 - 430( p c  - 0.248 65) * 0.01 Similar 
(although less strong) dependence was found by Gaunt and Sykes (1983). It definitely 
eliminates values of pc  like those quoted in Wilke (1983) and Gaunt and Sykes (1983). 

and 7 = -0.02 - 1300( p c  - 0.248 65) f 0.03. 

d 

Figure 8. E expansion for the exponent q. Meaning of curves and circles as in figure 7. 

In four dimensions, the most precise previous determination of p c  is due to Adler 
et a1 (1984). From series extrapolations, they obtained pc = 0.1603 f 0.002. This agrees 
perfectly with our value, as does the somewhat less precise value pc = 0.1600*0.0005 
of Stauffer (1985). For the exponent y = d v  - 2/3, Adler et af (1984) give y = 1.44* 0.05, 
while Gaunt and Ruskin (1978) obtained y = 1.48rt0.08. Both agree with our result 
y = 1.43f0.07, while the older MC result of Kirkpatrick (1976) is somewhat too high. 
The last author also found a considerably smaller value of /3 (0.52f0.03) than we 
do. Finally, we should add that there is a similarly strong correlation between pc and 
z2 (and thus also between pc and 7) as in three dimensions. Accepting for example 
the central value pc = 0.1603 of Adler et af (1984), we would obtain 7 = -0.3, a value 
hardly compatible with the E expansion (see below). 

Kinetic exponents for d = 3 and d = 4  have only been obtained previously by 
Alexandrowicz (1980). Statistics were much lower there, and pc was only known very 
roughly. It thus seems unclear why quoted errors in that paper are in most cases 
comparable to ours (one reason is that we have taken into account corrections to 
scaling, while Alexandrowicz has not). Agreement is fair in most cases. 

Finally, let us compare our results with E expansions. With E = 6 - d, these read 
(Amit 1976, Priest and Lubensky 1976, de Alcantara Bonfim et a1 1981) 

v = 4 + ( 5 E / 84) + 0.1 5 1 E' - 0.009 56 E + O( E ') (19) 

(20) 7 = -( ~ / 2 1 )  -0 .0222~*+ 0 . 0 3 1 3 ~ ~  +0( E') 
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and (Grassberger and Cardy 1985, Janssen 1985) 

z ,  = f+ ( ~ / 2 4 )  + 0 . 0 1 2 5 ~ ’ + 0 ( ~ ~ ) .  

These exDansions and resummations thereof (de Alc n ara Bonfim el 11981) are 
compared with our Monte Carlo results in figures 7-9. We see that the exponents v 
and z ,  do not present any problem. The situation for 77 is different, since the E 

expansion converges slowly there. In view of this, our values of 77 seem fully acceptable, 
in contrast to the value of Kirkpatrick (1976) (see Amit 1976, de Alcantara Bonfim et 
a1 1981). 

I I I I I I I 1  

1.01 6 

1 I I I I I I ,  
0 2 4 6 

d 

Figure 9. E expansion for the exponent z,, compared to Monte Carlo results. Broken line: 
first-order expansion (first two terms of equation (21)); full curve: second-order expansion 
(first three terms); full circles: Monte Carlo results of present work ( d  = 3,4) ,  exact values 
( d  = 1,6), and result from Grassberger (1985) ( d  = 2). 

Figure 10. Basic building blocks of ( a )  bond and ( b )  site percolation, when considered 
as a growth process as in the present paper. In both cases, we consider as a ‘basic building 
block’ the set of all potential blocking units (open circles) reached from one penetrable 
unit (full circles). The arrows indicate the direction of spreading. 
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In addition to the above simulations of bond percolation, we have also made a 
few test runs with site percolation. They were very much faster, but they also showed 
larger fluctuations. The reason for this seems to be that the basic length scale for site 
percolation is twice that for bond percolation, as indicated in figure 10. In consequence, 
we also expect finite-size corrections to be more important for the site case. Since our 
basic limitations were in storage space rather than in CPU time, we did not pursue site 
percolation. 

In conclusion, the present paper has presented results of a novel Monte Carlo 
method for studying percolation in three and four dimensions. The results were at 
least competitive with previous results, although we used a modest amount of computer 
time (-35 h on a CYBER 170/720, and 5 h on a CYBER7600). 
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